Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells.
نویسندگان
چکیده
We have fabricated titanium dioxide based dye-sensitized solar cells that incorporate corrosion-protected silver nanoparticles as plasmonic optical elements of the photoelectrode. The thickness of the TiO(2) layer separating the dye from the nanoparticles has been systematically varied using atomic layer deposition. Over the range of TiO(2) coating thicknesses examined (2 to 8 nm) there is clear enhancement of the dye extinction when plasmonic particles are present, with the enhancement increasing as the TiO(2) thickness decreases. The optical enhancements translate into photocurrent enhancements, with the best cells (thinnest TiO(2) coatings) showing 9-fold current enhancements under optimal monochromatic illumination. Preliminary experiments indicate that substantially larger optical enhancements are achievable with even thinner dye/particle separation layers, suggesting that even greater photocurrent enhancements may be achievable.
منابع مشابه
Effect of Hydroquinone Dderivatives in Electrolytes on Dye-Sensitized Solar Cell Performance
New kinds of hydroquinone derivatives were synthesized and along with a azo dye applied as additives in the iodide/iodine redox electrolyte for dye-sensitized solar cells and their effect on the short-circuit photocurrent of dye sensitized solar cells was investigated. Addition of 0.05 M a hydroquinone derivative in the electrolyte comprising 0.5 M 1-methyl-3-propylimidazolium iodide (MPII) and...
متن کاملFabrication of Novel High Potential Chromium-Doped TiO2 Nanoparticulate Electrode-based Dye-Sensitized Solar Cell (DSSC)
In the current study, pure TiO2 and Cr-doped TiO2 (Cr@TiO2) nanoparticles were synthesized via sol-gel method and the resulting materials were applied to prepare the porous TiO2 electrodes for dye-sensitized solar cells (DSSCs). It is hypothesized that the advantages of the doping of the metal ions into TiO2 lattice are the temporary rapping of the photogenerated electron-hole (charge carriers)...
متن کاملSynthesis and Application of Two Organic Dyes for Dye-Sensitized Solar Cells
In the present study, two new organic dyes based on indigo were prepared and used as sensitizers in dye-sensitized solar cells. To this end, indoxyl was utilized as the electron donor and cyanoacrylic acid as the electron acceptor anchoring groups. These dyes together with their corresponding intermediates were purified and characterized by FTIR, 1HNMR, 13CNMR, elemental analysis and UV-Visible...
متن کاملPhotocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells.
Localized surface plasmon resonance (LSPR) by silver nanoparticles that are photochemically incorporated into an electrode-supported TiO(2) nanoparticulate framework enhances the extinction of a subsequently adsorbed dye (the ruthenium-containing molecule, N719). The enhancement arises from both an increase in the dye's effective absorption cross section and a modest increase in the framework s...
متن کاملPlasmonic dye-sensitized solar cells incorporated with Au-TiO₂ nanostructures with tailored configurations.
We developed plasmonic dye-sensitized solar cells (DSSCs) with tailor-designed Au-TiO₂ nanostructures integrated into the photoanode. Mutually antagonistic Au-TiO₂ core-shell structures supported on SiO₂ spheres (SiO₂@TiO₂@AuNP and SiO₂@AuNP@TiO₂) were prepared and incorporated as additives into the photoanodes of the DSSCs. The DSSCs employing the nanocrystalline-TiO₂ (nc-TiO₂)/SiO₂@TiO₂@AuNP ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 24 شماره
صفحات -
تاریخ انتشار 2009